Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.07.31.229781

RESUMEN

It has been known that SARS-CoV-2 which is considered similar to SARS-CoV invades human respiratory epithelial cells through interaction with the human angiotensin converting enzyme II (ACE2). In this work, SARS-CoV-2S-RBD and its cell receptor ACE2 were used to investigate the blocking effect and mechanism of {beta}-chitosan to the binding of them. Besides, inhibitory effect of {beta}-chitosan on inflammation induced by SARS-CoV-2S-RBD was also studied. Firstly, Native-PAGE results showed that {beta}-chitosan could bind with ACE2 or SARS-CoV-2S-RBD and the conjugate of {beta}-chitosan and ACE2 could no longer bind with SARS-CoV-2S-RBD. HPLC analyses suggested that was found the conjugate of {beta}-chitosan and SARS-CoV-2S-RBD displayed high binding affinity under the condition of high pressure (40 MPa) compared with that of ACE2 and SARS-CoV-2S-RBD. Furthermore, immunofluorescence detections on Vero E6 cells and hACE2 mice showed that {beta}-chitosan had a significant prevention and treatment effect on SARS-CoV-2S-RBD binding. Meanwhile, SARS-CoV-2S-RBD binding could activate the inflammation signaling pathways of cells and mice, however, {beta}-chitosan could dramatically suppress the inflammations activated by SARS-CoV-2S-RBD. Subsequently, Western blot analyses revealed that the expression levels of ACE2 in experimental groups treated with {beta}-chitosan significantly reduced. However, after the intervention of ADAM17 inhibitor (TAPI), the decreased ACE2 expressions affected by {beta}-chitosan up-regulated correspondingly. The results indicated that {beta}-chitosan has a similar antibody function, which can neutralize SARS-CoV-2S-RBD and effectively block the binding of SARS-CoV-2S-RBD with ACE2. ADAM17 activated by {beta}-chitosan can enhance the cleavage of ACE2 extracellular domain with a catalytic activity of Ang II degradation, and then the extracellular region was released into the extracellular environment. So, {beta}-chitosan could prevent the binding, internalization and degradation of ACE2 with SARS-CoV-2S-RBD and inhibit the activation of inflammatory signaling pathways at the same time. This work provides a valuable reference for the prevention and control of SARS-CoV-2 by {beta}-chitosan.


Asunto(s)
Síndrome Respiratorio Agudo Grave , Inflamación
2.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.03.04.976662

RESUMEN

As the highly risk and infectious diseases, the outbreak of coronavirus disease 2019 (COVID-19) poses unprecedent challenges to global health. Up to March 3, 2020, SARS-CoV-2 has infected more than 89,000 people in China and other 66 countries across six continents. In this study, we used 10 new sequenced genomes of SARS-CoV-2 and combined 136 genomes from GISAID database to investigate the genetic variation and population demography through different analysis approaches (e.g. Network, EBSP, Mismatch, and neutrality tests). The results showed that 80 haplotypes had 183 substitution sites, including 27 parsimony-informative and 156 singletons. Sliding window analyses of genetic diversity suggested a certain mutations abundance in the genomes of SARS-CoV-2, which may be explaining the existing widespread. Phylogenetic analysis showed that, compared with the coronavirus carried by pangolins (Pangolin-CoV), the virus carried by bats (bat-RaTG13-CoV) has a closer relationship with SARS-CoV-2. The network results showed that SARS-CoV-2 had diverse haplotypes around the world by February 11. Additionally, 16 genomes, collected from Huanan seafood market assigned to 10 haplotypes, indicated a circulating infection within the market in a short term. The EBSP results showed that the first estimated expansion date of SARS-CoV-2 began from 7 December 2019.


Asunto(s)
COVID-19 , Enfermedades Transmisibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA